Macroscopic model for evacuation of
bees
We investigate a Hughes model
for controling the evacuation of Bees on a
surface in 3D . The Hughes model is a
system of partial differential equations (PDEs) and
consists of a nonlinear transport
equation and an Eikonal
equation which determines the movement direction of Bees.
Indeed, the Hughes model is a continuum macroscopic model which can
be simulate the global movement effects by interpreting Bees as
particles of flow. Considering this model, Bees tend to choose the
shortest path (in a certain metric) to reach the outlet of beehive
but it may be at a slower speed. To minimize the evacuation time and
control the path of Bees through the outlet, we add a convection
term (additional driving force) to the nonlinear transport
equation.
Prelimineries
By defining
\[ \color{blue}{\beta :=
- v^2_{\max}(\rho) \nabla \phi} \]
as
transport direction, we
consider the following regularized Hughes model where the motion
of crowds is modelled by PDEs
\[ \partial_t \rho - \nabla \cdot (\rho
\ v^2_{\max}(\rho) \nabla \phi) = \color{red}{\varepsilon}
\Delta \rho,\] \[ -
\color{red}{\delta_1} \Delta \phi + | \nabla \phi |^2 =
\dfrac{1}{\color{green}{v_{\max}(\rho)^2} +
\color{red}{\delta_2}}.\]
The model contains diffusion and Eikonal equations and is
completed with the following initial and boundary conditions
\[ \rho(0,\cdot) = \rho_0 \qquad
\text{in} \ \Omega \\ -(\varepsilon \ \nabla \rho + \rho \
v_{\max}(\rho)^2\ \nabla \phi) \cdot n = \tilde{v}_{\max} \ \rho
\qquad \phi = 0 \qquad \text{on} \ \Gamma_{D}, \]
- The density function which represents a crowd
\[ \rho\in C^1(0,t_n;C^2(\Omega)) \qquad \rho(t,\mathbf{x}):
[0,t_n] \times \Omega \mapsto \mathbb{R} \]
- The potential for \(
\mathbf{x} \in \Omega \subset \mathbb{R}^3 \) \[ \phi\in C^2(\Omega) \qquad
\phi(t,\mathbf{x}): [0,t_n] \times \Omega \mapsto \mathbb{R}
\]
- The chosen velocity model
as \[ \color{grren}{v_{\max}}\in
C^1(\Omega) \qquad v_{\max}(\rho) = 1- \rho \]
- \( \mathcal{T}_h : \)
family of conforming triangulations
over a domain \( \Omega \)
- The cell averages for element
\( T \in \mathcal{T}_h \)
\[ \bar{\rho}_{T} = |T|^{-1} \int_{T} \rho \ dx \]
Weak formulation
Let
\( H^1_{D}(\Omega) = \{v \in
H^1(\Omega): v|_{\Gamma_D} = 0 \} \) and Define:
\[ V_h = \{ v \in L^{2}(\Omega): v|_{T} \in \mathcal{P}^{0}(T)\
\text{for all} \ T \in \mathcal{T}_h\},\\ W_h = \{ v \in
C(\bar{\Omega}): v|_{T} \in \mathcal{P}^{1}(T)\ \text{for all} \ T
\in \mathcal{T}_h\} \cap H^1_{D}(\Omega), \] Using the
finite element method (FEM) for space
discretizations, we aim to find
\(
\rho\in C^1(0,t_n; V_h) \) and
\( \phi \in W_h \) such that
\[ \int_{\Omega} \partial_t \rho\ v \ dx + \int_{\Omega}(\rho \
v^2_{\max}(\rho) \nabla \phi) \cdot \nabla v\ dx - \int_{\Gamma}
(\rho \ v^2_{\max}(\rho) \nabla \phi) \cdot v\ dx -\varepsilon
\int_{\Omega} \nabla \rho\ \nabla v \ dx + \varepsilon
\int_{\Gamma} \nabla \rho\ v \ dx, \quad \forall v \in V_h \\
\delta_1 \int_{\Omega} \nabla\phi \ \nabla w \ dx + \int_{\Omega}
| \nabla \phi |^2 \ w \ dx = \int_{\Omega}
\dfrac{1}{v_{\max}(\rho)^2 + \delta_2}\ w \ dx, \quad \forall w
\in W_h \] It can be rewritten as
\[ \int_{\Omega} \color{purple}{\partial_t \rho}\ v \ dx
+\varepsilon \Big(\int_{\Omega} \nabla \rho\cdot \nabla v \ dx -
\int_{\Omega} \color{red}{[[ \nabla \rho ]]}\cdot [\![v]\!]_n dx -
\int_{\Omega} \color{red}{[[ \nabla v ]]}\cdot [\![\rho]\!]_n dx +
\frac{1}{h} \int_{\Omega} \color{green}{[\![\rho]\!] [\![v]\!]}
dx\Big)+ \int_{\Gamma} \tilde{v}_{\text{max}}\ \rho\ v \ dx = -
\int_{\Omega} \color{blue}{(\bar{\rho}\ \beta)} \cdot
\color{green}{[\![v]\!]} \ dx, \quad \forall v \in V_h \]
- Average of a function
across a common facet of two cells:
\( [[v]] = \frac{1}{2} (v^{+} + v^{-}) \)
- Jump of a function
across a common facet of two cells:
\( [\![v]\!] = v^{+} - v^{-},\)
- \( [\![v]\!]_{n} := v^{+}\cdot
n^{+}+ v^{-} \cdot n^{-} \)
- Using Lax-Friedrich flux
for the convective flux, \[
(\bar{\rho}\ \beta) = [[\bar{\rho}\ \beta]]\cdot n -
\dfrac{\eta}{2} [\![\bar{\rho} ]\!],\] Finally, we
use the finite difference (FD)
method to discretize the temporal direction \[
\partial_t \rho \approx \dfrac{\rho^{n+1} - \rho^{n}}{\tau},
\qquad \tau = t_{n+1} - t_n.\]
Adding an additive convection term
We add an additive convection term to control the speed and
direction of bees during exiting. Therefore, we have the following
PDE with the initial and boundary conditions
\[ \partial_t \rho - \nabla \cdot (\rho \ v^2_{\max}(\rho)
\nabla \phi) \color{red}{+ \ \vec{v}_{\text{vel}} \nabla \rho} =
\varepsilon \Delta \rho, \\ - \delta_1 \Delta \phi + | \nabla
\phi |^2 = \dfrac{1}{v_{\max}(\rho)^2 + \delta_2}.\]
Since \( \rho \in V_h \), then
we have to use \(\frac{1}{h}
[\![\rho]\!]_{-n} \) instead of
\( \nabla \rho \) . Therefore, the variational formula
regarding this case is as follows \[
\int_{\Omega} \partial_t \rho\ v \ dx +\varepsilon
\Big(\int_{\Omega} \nabla \rho\cdot \nabla v \ dx -
\int_{\Omega} [[ \nabla \rho ]]\cdot [\![v]\!]_n dx -
\int_{\Omega} [[ \nabla v ]]\cdot [\![\rho]\!]_n dx +
\frac{1}{h} \int_{\Omega} [\![\rho]\!] [\![v]\!] dx\Big)+
\color{red}{\frac{1}{h} \int_{\Gamma} \vec{v}_{\text{vel}}
\cdot( [\![\rho]\!]_{-n}\ [[v]]) \ dx} + \int_{\Gamma}
\tilde{v}_{\text{max}}\ \rho\ v \ dx \\ \qquad \qquad \qquad= -
\int_{\Omega}(\bar{\rho}\ \beta) \cdot [\![v]\!] \ dx, \quad
\forall v \in V_h \\ \delta_1 \int_{\Omega} \nabla\phi \ \nabla
w \ dx + \int_{\Omega} | \nabla \phi |^2 \ w \ dx =
\int_{\Omega} \dfrac{1}{v_{\max}(\rho)^2 + \delta_2}\ w \ dx,
\quad \forall w \in W_h\]
Main Overview
To apply the Hughes model to the surface mesh of the beehive,
three steps are required:
- Define geometry and meshing
- Geometry definition
- Doors for exiting Bees
- Rectangular cube
- Converting an STL file to XDMF file
- Reading XDMF file in python
More